### **Models in Primates**

### Progress in Imaging Techniques

### Marc Dhenain

Plate-forme Technologique INSERM / Institut Curie Orsay







### **Models in Primates**

# Example of spontaneous and heterogeneous models

### Primate heterogeneity



| Species                    | Maximum life |  |
|----------------------------|--------------|--|
|                            | span         |  |
|                            | (years)      |  |
| Primates                   |              |  |
| Human                      | 122          |  |
| Chimpanzee                 | 59           |  |
| Rhesus monkey              | 40           |  |
| Squirrel monkey            | 27           |  |
| Mouse lemur                | 12           |  |
| Tree shrew                 | 12           |  |
| Polar bear                 | 34           |  |
| Sheep, goat                | 20           |  |
| Dogs                       |              |  |
| Small size (Pekinese)      | 20           |  |
| Middle size (Beagle)       | 16           |  |
| Large size (Saint Bernard) | 14           |  |
| Cat                        | ~30          |  |
| Guinea pig                 | 8            |  |
| Rodents                    |              |  |
| Mouse                      | 3.5          |  |
| Rat                        | 4            |  |

### Brain heterogeneity in Primates







### What are age related alterations in primates?

Do they reproduce human alterations?

How many animals are involved?

### Age related cognitive alterations





### Delayed Response

(Bartus and Dean. Normal Aging, Alzheimer's disease and senile dementia, Aspects on Etiology, Pathogenesis, Diagnosis and Treatment, 1985)

### Age related cognitive alterations

- Prefrontal impairments, perseveration
  - → ~ 15-20 years in Rhesus monkeys
  - Very constant in different animals
- Tasks depending on medial temporal areas
  - → ~25-30 years in Rhesus monkeys
  - ◆ (But) Interindividual variations

What is responsible for these alterations?

### Macroscopic alterations

Cerebral atrophy





Cerebral atrophy in human

### Cerebral atrophy in Rhesus monkey









(Andersen et al., Brain Research, 1999)

### Temporo-parietal atrophy in mouse lemurs







(Dhenain et al., Neurob. Aging, 2000)

Fast evolution when the process is started

### Regional atrophy evaluation Several types of brain atrophies



Dhenain et al., Neurob. Aging, 2000

- Various clinical entities in spontaneous animal models?
- Human like disease or Primate specific disease ?

### Microscopic alterations

Amyloid deposits





Mouse lemur

(Gearing et al, PNAS, 1994)

### Microscopic alterations

### **Amyloid deposits**

| Animal species    | Maximum amyloid      | References     |  |
|-------------------|----------------------|----------------|--|
|                   | deposits density     |                |  |
| AD brain          | 256 /mm²             | Hyman, 1993    |  |
| Rhesus monkeys    | 8 /mm²               | Walker, 1987   |  |
| New world monkeys | 4-5 /mm²             | Walker, 1987   |  |
| Squirrel monkeys  |                      |                |  |
| Lemurian primates | 16 /mm²              | Bons, 1993     |  |
| Mouse lemurs      |                      |                |  |
| Tree Shrews       | 0 /mm²               | Pawlik, 1999   |  |
| Polar Bears       | 8-10 /mm²            | Cork, 1988     |  |
| Dogs              | Similar or exceeding | Cummings, 1996 |  |
|                   | severe cases of AD   |                |  |

(Dhenain, Handbook of Neuropsychology (2nd ed, 2001)

### Sequence homologies APP – beta amyloid

| Animal species    | β-APP         | A β Sequence  | Mutations    |
|-------------------|---------------|---------------|--------------|
|                   |               |               |              |
| Cynomolgus        | Homology 100% | Homology 100% | Not reported |
| monkeys           |               |               |              |
| New world         | Difference    | Homology 100% | Not reported |
| monkeys           | 3 amino acids |               |              |
| Squirrel monkeys  |               |               |              |
| Lemurian primates | ??            | Homology 100% | Not reported |
| Mouse lemurs      |               |               | _            |
| Tree Shrews       | Difference    | Homology 100% | Not reported |
|                   | 3 amino acids |               | -            |

(Dhenain, Handbook of Neuropsychology (2nd ed, 2001)

### Microscopic alterations

Amyloid angiopathy

- Amyloid angiopathy in most of the primates
- Squirrel monkey: model of amyloid angiopathy







monoclonal anti-Aß antibody (4G8)

Mutation similar to that of Icelandic patients with hereditary cerebral hemorrhage with amyloidosis (HCHWA-I) or cystatin C amyloid angiopathy (Wei et al. Stroke, 1996)

### Microscopic alterations

Neurofibrillary alterations











(Schultz, Neurob Aging, 2000)

# Functional consequences of neuropathological alterations

 No correlation between amyloid deposits and behavioral alterations

No study concerning neurofibrillary / behavioral alterations (especially in baboons)

### Apolipoprotein E

- In Human : ApoE4 is a risk factor for AD
- In Human : ApoE3 and E2, protection for AD
- ApoE4-like forms in primates
- ApoE3 and E2 forms seem to be 'favorable mutations' that occurred in the course of evolution.



### Alteration of the neurotransmission

- Acetylcholine
- Monoaminergic
  - Serotonin
  - Noradrenaline
- Somatostatin
- **...**

 Correlation between occurrence of neurotransmission alterations and behavioral alterations

#### First evaluation of treatments modulating the neurotransmission

| Traitement              | Classe                                        | Amélioration  | Date étude   |
|-------------------------|-----------------------------------------------|---------------|--------------|
|                         |                                               | Primates âgés |              |
| Physostigmine           | Anticholinestérase                            | Oui           | Bartus, 1979 |
| Tetrahydroaminoacridine | Anticholinestérase                            | Oui           | Bartus, 1983 |
| Arecoline               | Agoniste muscarinique                         | Oui           | Bartus, 1980 |
| Oxotremorine            | Agoniste muscarinique                         | Oui           | Bartus, 1983 |
| Choline                 | Cholinergique<br>Precurseur de phospholipides | Non           | Bartus, 1980 |
| Apomorphine             | Agoniste dopaminergique                       | Non           | Bartus, 1983 |
| Museimol                | Agoniste GABA                                 | Non           | Bartus, 1983 |
| Clonidine               | Agoniste α agoniste                           | Non           | Bartus, 1983 |

### More recently

- Neurotrophic Factors
- Neurotransmitters
- Genic Therapy

### Neuroendocrinologic proximity of the primates? Example of estrogenic alteration

- Menopauses in superior primates
  - Associated behavioral alterations



### **Conclusion Primates**

- No case of AD in primates = Models for normal aging
  - No mutation reported for AD-like lesions
  - Few animals evaluated
- Evaluation of the factors that are responsible for interindividual differences
  - Clinical approach in animals with well known historical records
- Factors modulating cognitive aging
  - Neuroendocrinologic factors, Biological rhythms,...

# Progress in Magnetic Resonance Imaging Techniques

### Animal models and imaging (MRI)

Methodological progress in imagery performed in human



- Progress in small animal imaging
  - Animal model Phenotyping
  - Longitudinal follow-up of pathologies and treatments
    - Non invasive / Rapid transfer in humans

### MRI in small animals







### In-vivo imaging - Mouse brain

Resolution = 234x117x117 µm3 Imaging time = 51 minutes



### Post mortem imaging

Resolution = 117x58x58 µm3 Imaging time = 7 hours 36 min



### Many parameters accessible

- Examples of NMR parameters
  - Anatomy

Perfusion / Functional imaging

Spectroscopy

Molecular/cellular imaging (amyloid plaque imaging)

### Cerebral atrophy in mouse lemurs



### Cerebral atrophy in APP/PS1 mice







- Midbrain atrophy
- No cortical atrophy
- No hippocampal atrophy



Collaboration Benoît Delatour (NAMC)
Collaboration AventisPharma





### Functional imaging



In human

More difficult to perform in animals (anesthetized during the MR exam)

### Hemodynamic response imaging in small animal





#### **GABAa antagonist : Neuronal dis-inhibitor**



Alterations caused by amyloid angiopathy?

### Spectroscopy





Moats et al, 1994, MRM

## Spectroscopy – Mouse models of Alzheimer's disease



No difference in younger animals

Von Kienlin, ISMRM, 2002

### Spectroscopy







Neuronal loss?



Glial proliferation?

### Toward amyloid deposits detection by MRI?



### Amyloid imaging in mice



° Large deposits

Good resolution possible



### Post mortem detection



Resolution =  $62x47x59 \mu m^3$ 



Resolution =  $234x117x117 \mu m^3$ 

Dhenain, Delatour, Volk et al. Collaboration AventisPharma

# Toward in-vivo detection Amyloid deposit vectorization by contrast agents





Poduslo J F et coll., Neurobiology of disease, 11, 315-329, 2002

Ex Vivo



### In Vivo

Zaim Wadghiri Y et coll., MRM, 50, 293-302, 2003



Control

### Conclusion - small animal imaging

- Many parameters
  - Anatomy
  - Perfusion
  - Spectroscopy
  - Cellular imaging
- Evaluation of the parameters that are the most relevant to the diseases/models

### Acknowledgments

- PT INSERM-Institut Curie
  - Nadine El Tayara
  - Evelyne Chenu
  - Christine Walczak
  - Andreas Volk
- NAMC
  - Benoît Delatour
  - Camille Le Cudennec

- Aventis pharma
  - Marie-Noëlle Castel-Barthe
  - Jesus Benavides
  - Hans-Paul Juretschke
- UMR8571 Brunoy
  - Martine Perret
  - Fabienne Aujard
- Parc Zoologique Paris
  - Jean-Luc Picq